Toxicology, Biological Activity, Synthesis, and Anti-Microbial Effects of Lead Nanoparticles

Journal of medical physics and applied sciences is an international peer reviwed journal aiming to publish the most relevant and recent research works across the world. Medical Physicists will contribute to maintaining and improving the quality, safety and cost-effectiveness of healthcare services through patient-oriented activities requiring expert action, involvement or advice regarding the specification, selection, acceptance testing, commissioning, quality assurance/control and optimised clinical use of medical devices and regarding patient risks and protection from associated physical agents (e.g. x-rays, electromagnetic fields, laser light, radionuclides) including the prevention of unintended or accidental exposures; all activities will be based on current best evidence or own scientific research when the available evidence is not sufficient. Medical physics is also called biomedical physics, medical biophysics or applied physics in medicine is, generally speaking, the application of physics concepts, theories and methods to medicine or healthcare.
We are sharing one of the most cited article from our journal. Article entitled “Toxicology, Biological Activity, Synthesis, and Anti-Microbial Effects of Lead Nanoparticles” was well written by Dr. Walaa Fikry Elbossaty.
Abstract
Lead is lethal metal which can be used in different fields. Lead metal has a harmful influence on human care, it effect on all body systems. Lead nanoparticles (Pb NP) can be sensitized by different methods including chemical, physical, and biological methods. The furthermost inferior method is biological method owing to its ecofriendly, low cost, simple, not consume time, and not requisite luxurious tools. Pb NP entertainment as antimicrobial medications; this may perhaps in line for its capability to penetrate cell membrane of microbe, thus increase permeability of cell membrane, accumulation of Pb NP inside microbe. Once lead separated from Pb NP, it transfers in to respiratory system and bind with respiratory enzymes and deactivated them, leading to release free radicals, increase reactive oxygen species and cell destruction, so lead nanoparticles have a significant antimicrobial influence.
Here is the link to view complete article: https://medicalphysics.imedpub.com/toxicology-biological-activity-synthesis-andantimicrobial-effects-of-lead-nanoparticles.php?aid=19625
Authors are welcome to submit their manuscripts. Submit manuscript at https://www.scholarscentral.org/submission/insights-medical-physics.html (or) as an e-mail attachment to medicalsci@scholarlymed.com or medicalsci@medicinaljournals.com
Media contact
Eliza Miller
Managing Editor
Journal of Medical Physics and Applied Sciences